

0040-4039(94)01969-X

Highly Stereoselective Synthesis of Tetrasubstituted Alkenes via [2,3]-Wittig Rearrangement

Johann Mulzer* and Benjamin List Institut für Organische Chemie der Freien Universität Berlin Takustraße 3, D-14195 Berlin, FRG.

Keywords: [2,3]-Wittig rearrangement, Claisen rearrangement, Horner-Wadsworth-Emmons reaction, tetrasubstituted alkenes.

Abstract: A highly stereoselective synthesis of tetrasubstituted alkenes via the sequence Horner-Wadsworth-Emmons-, Grignard- and [2,3]-Wittig reaction is described, eight examples are given.

Despite the wealth of alkene syntheses there is so far no general stereoselective procedure for preparing tetrasubstituted olefins¹, especially in form of the synthetic valuable allylic alcohols 1².

$$R^1$$
 R^2
 R^4
OH

We describe here a highly (E)-stereoselective route³ which is based on a [2,3]-Wittig-Still rearrangement⁴⁻⁵ of chiral tertiary allyl stannylmethyl ethers 5. These were prepared in a *connective* manner from β -keto phosphonate 2⁶ and aldehydes R¹CHO via Horner-Wadsworth-Emmons reaction to the enones 3, followed by a chelation-controlled Grignard addition giving the tertiary allylic alcohols 4 which were alkylated with iodomethyltributyl tin⁷. The stannylmethyl ethers 5 were transmetallated with n-BuLi at low temperatures to form the olefins 6 (*Scheme 1*). All stereo-differentiating reactions in *Scheme 1* typically proceed with stereoselectivities >95%.

$$(EtO)_2(O)P \xrightarrow{a} \qquad \qquad R^1 \xrightarrow{b} \qquad RO \qquad R^2$$

$$OBOM \qquad OBOM$$

$$2 \qquad 3a-f \qquad 4a-1 (R=H)$$

a) R^1 CHO, base; b) R^2 M, THF, -78°C; c) KH, Bu_3 SnCH $_2$ I, THF/DMPU, RT; d) n-BuLi Scheme 1

The yields of the Horner-Wadsworth-Emmons reactions ($2 \rightarrow 3$) (Table 1) range from fair to very good, the E/Z selectivities are generally high.

Table 1: Horner-Wadsworth-Emmons reactions with β-ket	ophosphonate 2
---	----------------

Enone	R ¹ CHO	Base, Sol., Temp.	Yield (E/Z)a	
3a	МеСНО	LiOH·H ₂ O ⁸ , THF, RT	65% (97:3)	
3 b	EtCHO	LiOH·H₂O, THF, RT	72% (97:3)	
3c	PhCHO	LiOH·H ₂ O, THF, RT	86% (>99:1)	
3d	BnOCH ₂ CH ₂ CHO	кн, тнг, 0° С	52% (>99:1)	
3e	BnOCH ₂ CH ₂ CH ₂ CHO	$Ba(OH)_2 \cdot 8H_2O^9$, THF/ H_2O , RT	88% (>99:1) ^b	
3f	0 0	LiOH·H₂O, THF, RT	80% (95:5)	

a) via ¹H-NMR of the isolated isomers; b) the enantiomeric phosphonate ent-2 was used in this case.

In our hands the new variants of the Horner-Wadsworth-Emmons reaction with lithium⁸- or barium hydroxide⁹ turned out to be ideal, whereas other methods (e.g. LDA, NaH, LiCI/DBU) gave unsatisfactory results.

The results of the Grignard reactions $(3 \rightarrow 4)$ are shown in *Table 2*:

Table 2: Grignard additions to enones 3 (THF, -78°C)

Alcohol	R ¹	R ² M	Yield, (de) ^a 87% (>98%)	
4a	Me	MeMgCl		
4b	Me	VinylMgCl	81% (>98%)	
4c	Me	AllylMgCl	90% (23%)	
4 d	Et	$PhC \equiv CMgCl$	90% (>98%)	
4e	Et	PhMgCl	95% (>98%)	
4f	Ph	MeMgCl	88% (>98%)	
4g	BnOCH ₂ CH ₂	EtMgBr	91% (>98%) ^b	
4h	BnOCH ₂ CH ₂ CH ₂ c	MeLi	64% (35%)	
4h	BnOCH ₂ CH ₂ CH ₂ c	MeCeCl ₂ ¹⁰	45% ^d (60%)	
4h	BnOCH ₂ CH ₂ CH ₂ c	MeMgCl	92% (>98%)	
4i BnOCH ₂ CH ₂ CH ₂ c		EtMgBr	92% (>98%)	
4j BnOCH ₂ CH ₂ CH ₂ c		LAH (Et ₂ O, -10°C)	94% (>98%)	
4k		EtMgBr	62% ^e (>98%)	
41	0~	O MgBr	92% (>98%)	
	1 °	O - MgBr		

^a via ¹H-NMR; ^b de = 80% at -5°C; ^c the (R)-enone was used; d+40% recovered starting material; e+20% 1,4-product ¹¹

All Grignard reactions except the one leading to 4c proceed with >98% asymmetric induction to give the *anti* tertiary allylic alcohols in very good yields. This high selectivity which can be explained in terms of the "chelate-Cram model" 12 is well known 13 for BOM and MOM protected α -hydroxyketones and -aldehydes.

Yields and stereoselectivities of the [2,3]-rearrangement are generally high except for 6c (*Table 3*). The lacking stereoselectivity in this case may be due to the different electronic and/or steric properties of the phenyl substituent.

Table 3: Alkylation to- and [2,3]-Wittig rearrangement of tributylstannyl methyl ethe	utvistannyl methyl ether 5
---	----------------------------

Compounds	R ^I	R ²	Yield of 5	Yield of 6	Conditions	(E)-6: (Z)-6ª
5a, 6a ¹⁷	Me	Me	85%	94%	THF, -78°C	>99:1
5b, 6b	Ph	Me	78%	98%	THF, -78°C	95:5
5c, 6c	Et	Ph	90%	96%	THF, -100°C	~50:50
5d, 6d	BnOCH2CH2	Et	81%	95%	hexane, -90°	>99:1
5e, 6e	BnOCH ₂ CH ₂ CH ₂ ^b	Me	93%	92%	THF, -78°C	>99:1
5f, 6f	BnOCH ₂ CH ₂ CH ₂ ^b	Et	77%	87%	hexane, -90°	>99:1°
5g, 6g ¹⁷		Et	82%	91%	THF/hexane	97:3
5h, 6h	0~	()	87%	99%	(1:5), -80°C THF/hexane	97:3
	1	0, ~_{}			(1:5), -80°C	

a) via ¹H-NOE-difference studies on the isolated pure products; b) the enantiomer was used in this case; c) 75:25 at -78°C in THF. ¹⁴

Allylic alcohol 4b gave a 4.4: 1 mixture of dienes (E)-7 and (Z)-7 as the only regioisomers:

a) KH, THF/DMPU, Bu₃SnCH₂I; b) n-BuLi, THF/hexane (5:1), -100°C, 86%.

Scheme 2

To our knowledge this reaction represents the first example of a [2,3]-Wittig-Still rearrangement of a diallyl carbinol to a 1,3-diene.

The preparative utility of allylic alcohol derivatives such as 6 lies in the possibility of creating a quaternary stereogenic centre vicinal to a tertiary one, both in stereochemically pure form. Thus allylic alcohol 8, prepared from 6e, undergoes a clean and *stereospecific* Eschenmoser-Claisen rearrangement¹⁵ to the corresponding dimethylamide 9 in nearly quantitative yield (*Scheme 3*).

a) Dimethylacetamide dimethylacetal (6eq), toluene, 100°C, 97%.
 Scheme 3

Compound 9 is an A-ring precursor in a planned 16 novel synthesis of corbyric acid:

$$H_2NOC$$
 H_2NOC
 A
 N
 Co
 Me_2NOC
 Me_2NOC
 Me_2NOC
 Me_2NOC

Acknowledgement: This work was generously supported by the Schering AG, Berlin and the Deutsche Forschungsgemeinschaft. We would like to thank W. Münch for NOE-measurements and S. Koch for technical assistance.

References and Notes:

- 1. Deslongchamps, P., Chapdelaine, D., Hall, D.G., Préville, P. Synlett 1994, 660-2 and references therein.
- 2. Mulzer, J., Mohr, J.T. J. Org. Chem. 1994, 59, 1160-5.
- 3. For a related strategy, see: Kallmerten, J., Tong, X. Synlett 1992, 845-6.
- 4. Still, W.C., Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927; Still, W.C., McDonald III, J.H., Collum, D.B., Mitra, A. Tetrahedron Lett. 1979, 593-4.
- 5. Reviews: a) Brückner, R. Kontakte (Darmstadt) 1991 (2), 3-13; b) Nakai, T., Mikami, K. Chem. Rev. 1986, 885-902; c) Brückner, R. and d) Marshall, J.A., in Comprehensive Organic Synthesis (Trost, B., Fleming, I., Eds.); Pergamon Press, Oxford, 1991, Vol. 6, 873-908 and Vol. 3, 975-1014; e) Nakai, T., Mikami, K. Synthesis 1991, 594-604; f) Brückner, R. Nachr. Chem. Techn. Lab. 1990, 38, 1506-1510.
- 6. 2 was prepared from (L)-ethyl lactate (two steps, 90%).
- 7. Still, W.C. J. Am. Chem. Soc. 1978, 100, 1481-7; Seitz, D.E., Caroll, J.J., Cataya M., C.P., Lee, S.-H., Zapata, A. Synthetic Commun. 1983, 13, 129-34.
- 8. Bonadies, F., Scettri, A., Cardilli, A., Lattanzi, A., Orelli, L.R. Tetrahedron Lett. 1994, 35, 3383-6.
- 9. Paterson, I.A., Yeung, K.-S., Smaill, J.B. Synlett 1993, 774-6.
- 10. Imamoto, T., Takiyama, N., Nakamura, K., Hatajima, T., Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392.
- 11. Interestingly this is the only case where the 1,4-product could be detected.
- 12. Cram, D.J., Elhafez, F.A.A. J. Am. Chem. Soc. 1952, 74, 5828.
- 13. Still, W.C. Tetrahedron Lett. 1980, 21, 1031; see also ref. 3.
- 14. A similar solvent/temperature effect has already been observed: Liskamp, R.M.J., Bol, K.M. Tetrahedron Lett. 1991, 32, 5401-4.
- 15. Eschenmoser, A., Wick, A.E., Felix, D., Steen, K. Helv. Chim. Acta 1964, 47, 2425.
- 16. List, B. PhD thesis in preparation, FU-Berlin.
- 17. 6a: $[\alpha]_D^{20} = -72.3^\circ$, c= 0.70 (CHCl₃); MS (EI, 80eV, 90°C): m/z= 278 (M+, 1.2%); ¹H-NMR (250MHz, CDCl₃, selection): $\delta = 0.96$ (d, J = 7.3Hz, 3H); 1.23 (d, J = 7.1Hz, 3H); 1.60 (s, 3H); 1.66 (s, 3H); 3.00 (m, 1H); 3.48 (d, J = 7.6Hz, 2H); 4.84ppm (q, J = 7.1Hz, 1H).
- 6g: $[\alpha]_D^{20} = -133.0^\circ$, c= 0.32 (CHCl₃); MS (EI, 80eV, 150°C): m/z= 378 (M+·, 0.1%); ¹H-NMR (250MHz, CDCl₃, selection): δ = 1.05 (t, J = 7.8Hz, 3H); 1.28 (d, J = 7.0Hz, 3H); 2.14 (q, J = 7.8Hz, 2H); 3.02 (q, J = 7.3Hz, 1H); 3.61 (d, J = 7.3Hz,2H); 3.69 (t, J = 7.5Hz, 1H); 4.02-4.20 (m, 2H); 4.83ppm (q, J = 7.0Hz, 1H).

(Received in Germany 12 September 1994; accepted 7 October 1994)